1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| Sequential( (0): Conv2d(3, 16, kernel_size=(11, 11), stride=(3, 3)) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU(inplace=True) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (4): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1)) (5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU(inplace=True) (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (8): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (9): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (10): ReLU(inplace=True) (11): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1)) (12): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (13): ReLU(inplace=True) (14): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (15): Flatten(start_dim=1, end_dim=-1) (16): Linear(in_features=3136, out_features=2048, bias=True) (17): ReLU(inplace=True) (18): Linear(in_features=2048, out_features=1, bias=True) (19): Sigmoid() )
|