题目链接
做法
$$
f(k) = \sum_k (\sum_{i = 1}^{n} a_i^k) x^k\\
= \sum_k \sum_{i = 1}^{n} (a_ix)^k\\
= \sum_{i = 1}^{n} \sum_k (a_ix)^k\\
= \sum_{i = 1}^{n} \frac{1}{1 - a_ix}\\
= \sum_{i = 1}^{n} (1 - \frac{-a_ix}{1-a_ix})\\
= n - \sum_{i = 1}^{n} \frac{-a_ix}{1-a_ix}\\
= n - x \sum_{i = 1}^{n} \ln’(1 - a_ix)\\
= n - x \ln’(\prod_{i = 1}^{n} (1 - a_ix))
$$
分治FFT + 多项式求 Ln 即可。
1 |
|